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lstituto Nazionale di Fisica Nucleare, Sezione di Milano, Italy 
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Abstract. By means of a physically interesting example, it is shown how the mathematical 
theory of quantum stochastic calculus can be used in modelling physical systems. The 
example is the so-called electron shelving effect. The fluorescent light emitted by a single 
atom or ion presents periods of darkness if two transitions, one weak and one strong, are 
simultaneously driven. By a previously developed theory of counting processes, based on 
quantum stochastic differential equations, the full statistics of the emitted photons is 
obtained. In particular, the results on the duration of bright and dark periods, previously 
obtained by Cohen-Tannoudji and Dalibard, are completely confirmed. 

1. Introduction 

Quantum stochastic calculus (QSC) (see, for instance, [ 1-31) was developed originally 
as a mathematical theory of quantum noise. Afterwards it was realised that it was also 
useful in other physical applications as in the treatment of input and output channels 
in quantum systems [4] and  in measurement theory in quantum mechanics [5-91. In  
the opinion of the writer, QSC is now not only a well developed mathematical theory, 
but also a flexible tool, very useful in modelling concrete physical systems. Indeed, 
the aim of this paper is to illustrate this last point, by showing how QSC can be used 
for treating a physically interesting phenomenon, the so-called eleciron shelving efSeci. 

Today, experimental techniques have reached the point at which it is possible to 
observe the fluorescent light emitted by a single atom or  ion. There is, therefore, the 
possibility of observing new effects which are completely masked when many emitters 
are involved. One of these phenomena (electron ‘shelving’) was proposed by Dehmelt 
as a very sensitive scheme for detecting very weak transitions in single ions [ lo ,  111. 

Consider a three-level atom. Following Cohen-Tannoudji and Dalibard [ 121, call 
the states / g )  (ground), lb) (blue) and Ir) (red) and the corresponding transitions the 
blue transition ( b  + g )  and the red one ( r  += g).  Assume the blue transition to be very 
strong and the red one very weak. When both transitions are driven by two suitably 
tuned lasers, we expect the atom to emit blue fluorescent light. But sometimes, when 
the atom absorbs a red photon, the electron goes into the red state, which has a long 
lifetime (a fraction of a second), and the fluorescent light stops until the red state 
decays. Thus we expect to observe bright and dark periods, randomly distributed. In  
a pictorial language, we say that during a dark period the electron is ‘shelved’ in the 
red state. Indeed, experimentalists have succeeded in observing this effect [ 13-15]. 
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Various papers have been published on the theoretical explanation of this effect 
[ 12,16-221, studying different aspects of the phenomenon and  considering various 
physical situations (different level schemes, coherent-incoherent excitation, etc). For 
the case of the three-level structure discussed above and for coherent excitation, a 
good treatment is given by Cohen-Tannoudji and Dalibard [12]. 

From the theoretical point of view, the problem is to study the statistics of the 
photons emitted by a three-level system, excited by two coherent sources. A theory 
of counting processes, well based on measurement theory in quantum mechanics, was 
developed some time ago by Davies [23] (see also [24-261). Later, this theory was 
reformulated [5,7] by using QSC and the connections with other continuous-measure- 
ment schemes [8,27-291 were exploited. 

Other approaches to quantum counting processes have been proposed in the 
literature, based on perturbation theory and on  analogies with classical counting 
formulae (of which [30] is a typical example). However, the counting formulae derived 
from these approaches lead to unphysical consequences, such as negative probabilities, 
if they are applied without regard to the approximations made in their derivations. 
This is essentially a consequence of the fact that the attenuation of the field due to 
the detector is not taken into account. These criticisms were raised, for instance, in 
[25,26,31]. For the case of a single-mode free field, by starting from explicit models 
for the detector, an  alternative photon counting formula has been derived in [31-331 
which is free from unphysical features. On the other hand, the theory developed in 
[5,7,23-261 always gives rise to well defined probabilities, is not model dependent 
and has a wide range of applicability. When this theory is particularised to the case 
of a single-mode free field the results of [31-331 are reobtained. 

In  this paper we show how the model of [12] can be restated in the language of 
Q S C  and how the theory of [5,7] can be used for obtaining the counting probabilities. 
In this way the full statistics of the light emitted by the three-level system described 
above is obtained and, in particular, the length of bright and  dark periods is calculated. 
The results and the physical explanation of the shelving effect given in [12] are 
completely confirmed by our computations. In this respect, let us stress that our main 
purpose is not to give new results, but to illustrate a previously developed theoretical 
formalism by means of a physically interesting example. We hope, however, that the 
methods presented here might contribute to a better understanding of the behaviour 
of the system and might help in the treatment of more general situations. 

2. Quantum stochastic calculus 

In this section, we review, at a very informal level, some of the results of Hudson and 
Parthasarathy [ 1-31. We consider the simplest version of quantum stochastic calculus, 
namely that one based on the boson Fock space. 

Consider N Bose fields a,( t j, U/-(  t 1, satisfying the canonical commutation relations 

and choose the Fock representation. This means that the one-particle space is h ,  = C 0 
L2(R) and the Hilbert space on which the field operators act is the symmetric Fock 
space over h ,  . We denote the Fock space by r and the Fock vacuum by Go. 
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We then define the annihilation, creation and gauge (or number) processes by, 
respectively, 

A::= J dsu,(s) 
0 

r r  

A QSC of It8 type, based on the integrators dA:, dA:', dA: and dt, has been 
developed by Hudson and Parthasarathy (see, for instance, [ 2 ] ) .  The couples A:, A:- 
are non-commutative analogues of independent Wiener processes and the operators 
'2: are the main ingredients in the construction of quantum analogues of Poisson 
processes. 

Quantum stochastic calculus obeys very simple formal rules, which can be sum- 
marised in the following way. 

(a)  The fundamental integrators 'point into the future', i.e. 

dA', := &+dl  -A: = d s  aJ(s),  . . . 

and commute with adapted processes (roughly speaking, an adapted process M (  t )  is 
an operator-valued quantity depending on the fields A:, AJ,", A{ only for times s less 
than t (see [2] definition 3.1 and theorem 4.5)). 

(b) The fundamental integrators satisfy simple multiplicarion rules (see [ 21 equation 
(7.1)): 

(2.3) 

and all the other products involving dA:, dA', , dA: and dt  vanish. 
The Hudson and Parthasarathy theory allows us, in particular, to give meaning to 

'stochastic Schrodinger equations'. Let h0 be an Hilbert space (representing the Hilbert 
space of some system S )  and consider the following quantum stochastic differential 
equation (QSDE)  for operators in hoOT: 

d U , =  x ( -R ,dA:+R,dA:A- -RiR ,d t ) - iHd t  U, ( 2 . 4 ~ )  

(2.4b) u,=o 
where R,, H E B(ho) (bounded operators on h,) and H = HA. Here and in the following 
we identify R, with R,@U, A: with U@A:, and so on. The solution U, of this equation 
exists and is unique; { U,, t 3 O }  is an adapted process and, for any t 3 0, Ur is a unitary 
operator on hOOT (see [2], § 7).  Note that, since U, is an adapted process and by 
rule (a) above, we have that [ U,, dA',] = [ U,, dA:-] = 0. 

(, 1 

The formal solution of (2.4) can be written as [7] 

J 

U,  = 5. exp ( - i H d s  + ( - RI d AJ, + R, d AJJ 
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where f denotes the time-ordered product. Indeed, this equation gives 

d U , ~ U , + , , - U , =  - iHdt+C(-RTdA{+R,dA:$)  
I 

“ 1  = n = ~  7 ( - i H d t + x ( - R ; d A { + R , d A : ’ )  n 
J 

Up to order dt, the terms with n > 2 vanish, the term with n = 1 gives -iH d t +  
C(-RJ dA:+ RJ dA:’) and, by the multiplication rules (2.3), the term with n = 2  gives - +  X R:Rl dt. Therefore, ( 2 . 4 ~ )  is recovered; from this and the fact that U,,  as given 
by (2.5), satisfies the initial condition (2.4b), then (2.5) gives the unique solution of (2.4). 

From expression (2.5) the unitarity of U, is apparent. The quantity U, can be 
interpreted as the evolution operator for the system S interacting with the fields a,( t ) ,  
in the interaction picture with respect to the free dynamics of the fields. The operator 
H represents the ‘free’ Hamiltonian for system S and the expression iX(R, dA$- 
R j  dA{) gives the interaction between system S and fields. The term --$R;RJ d t  is a 
correction term due to the fact that we are using a stochastic calculus of It8 type; it 
appears only in differential equation ( 2 . 4 ~ )  and not in its solution ( 2 . 5 ) .  Formally, 
it is possible to introduce also a QCS of Stratonovich type [4]; in this case no correction 
term would also appear in the differential equation for the evolution operator U,. 

Let p be the initial state for system S ( p  is a statistical operator on h,3) and let the 
initial state for the fields be the Fock vacuum. The expression 

P (  t )  := Trr{ Ut ( P  0 I+oX+ol) U:> 
(where Trr is the partial trace over Fock space) represents the reduced dynamics of 
system S. It can be shown [2-4,7] that p (  t )  satisfies exactly the quantum master equation 

Another important result is the so-called quantum regression theorem, which says 
that certain time-ordered multitime correlation functions for system operators can be 
re-expressed by means of the reduced dynamics exp(Lt) (see [4] 9 1V.D). 

In a pictorial language, what we have done in this section is the following. We 
have an open system S interacting with its environment. To describe this situation we 
make certain approximations. First, the physical environment is replaced by some 
Bose fields a,(t). Then, the interaction between system S and fields is chosen to be 
so singular that, when the degrees of freedom of the fields are eliminated, the reduced 
dynamics of system S exactly obeys a quantum master equation. Moreover, the 
quantum regression theorem holds, not as an approximation, but as an exact result. 
The approximations usually needed for eliminating the ‘memory’ terms from the 
equation for the reduced dynamics are made directly on the dynamics of the total 
system (system S and environment). Quantum stochastic calculus is the mathematical 
theory that allows us to give a rigorous meaning to the resulting equations for the 
dynamics of the total system. 

3. The model 

Consider a three-level system driven by two lasers. The laser fields are treated classi- 
cally. With respect to the notations of the introduction, we denote by 10) the ground 
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state lg), by (1) the blue excited state Ib) and by 12) the red excited state Ir). In the 
rotating-wave approximation and after removing the explicit time dependence, the 
Hamiltonian of the system is given by 

where the quantities a, ( C l ,  > 0) are called Rabi frequencies and the quantities A ,  are 
called detuning parameters (cf [ 121). 

We now have to introduce the possibility of emission of fluorescent light. Our 
strategy will be to replace the true electromagnetic field by the Bose fields a,(t) 
introduced in the previous section and to describe the dynamics of the system atom- 
fields by a QSDE of the type ( 2 . 4 a ) .  The physical approximations that allow this 
replacement are essentially: (i) the interaction atom-field is taken to be linear in the 
field operators; (ii) the rotating-wave approximation is made; (iii) the field spectrum 
is assumed flat and the coupling constant is independent of frequency (see [ 4 ]  p 3762) .  

In the interaction picture with respect to the free dynamics of the electromagnetic 
field and in the dipole approximation, the interaction between an atom and the 
electromagnetic field is - e r  E (  r, t ) ,  where r is the position of the electron and E is 
the quantum electric field (approximation (i)  above). 

If the atomic transition frequencies are well separated, any transition is essentially 
coupled to different modes of the field and can be treated independently from the 
others. Consider the lO)*ll) transition and let ICIy(r), v =0,  1, be the wavefunctions of 
the two states. In the rotating-wave approximation ( ( i i )  above), the interaction Hamil- 
tonian becomes 

HI"= - e l l )  d'rtLT(r)r. E + ( r ,  t ) $ o ( r ) ( O i + H c  I 
where Ef(r, t )  is the positive-frequency electric field operator. Then, let b , ( w )  be a 
set of modal annihilation operators, such that [ b , ( w ) ,  b l ( w ' ) ]  = 6,,6(w - U ' ) ,  where 
w 2 0 is a continuous index representing energy and j a discrete index. For instance, 
by using an expansion in spherical harmonics, j is the triple (1, m, (T), where (T = 1 , 2  
is a polarisation index. By using these operators, E+(r, t )  can be written as 

1 r + =  
E + ( r ,  r ) = C &  J dwF,(r;  w )  e-'"'b,(w). 

J J2.rr 0 
( 3 . 2 )  

The explicit expression of the coefficients t ( r ;  w )  is not important here. By setting 

j ' , ' " (w):= - e  d 3 r 4 T ( r ) r .  t ( r ;  w ) & ( r )  I 
the interaction Hamiltonian becomes 

H l o = ~ l ) ~ ~ [ ~  dw e-'"'f,'O(w)b,(w)(01+HC , J2Tr 

and, by going into the interaction picture with respect to the free dynamics of the 
atom, we obtain 

HI, = 1 1) 1 = I dw e-'"%l"( w + w I )  bJ ( w + w , ) ( O /  + HC 
1 

J d 2 H  - w I  

where w 1  is the frequency of the considered transition. 
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Now, the approximation ( i i i )  above consists of taking f,"( w )  constant in a neigh- 
bourhood of w = wI and zero elsewhere, so that we can replace f,''(w + wl) by f ;O(w, )  
(coupling constant independent of frequency). Then we let the interval of integration 
go from --OC to +cc (flat spectrum of the field). In  this way, the interaction Hamiltonian 
becomes 

where 

U,( t )  := = dw e-'W'b,(w+wl). 
J 2 7  --x 

It turns out that the fields u,( t )  satisfy the commutation rules (2.1). This shows that, 
in the approximations considered, the atom-field interaction is of the type of the 
interaction term appearing in (2 .5)  and ( 2 . 4 ~ ) .  

Summing up, the evolution operator for our system is given by (2.5) and the 
evolution equation by (2 .4u) ,  where H is given by (3 .1 )  and 

( 3 . 3 )  

Here we have split the field modes into two disjoint sets I ,  and Z2, due to the fact that 
the two transitions are coupled to essentially independent modes of the field. 

The previous comments are intended to give a rough justification of the use of 
(2 .4u) ,  (3.1) and ( 3 . 3 )  for describing the dynamics of our system (atom and electromag- 
netic field). However, to convince oneself that the approximations introduced are 
sensible, the best way is to consider the reduced dynamics of the atom and to show 
that it is given by the usual Bloch equations. Indeed, as we have seen, (2.4a j implies 
exactly the master equation (2.6). In our case the Liouville operator ( 2 . 7 )  turns out 
to be 

\ " = I  / 
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These equations show that the reduced dynamics of the atom is the usual one and, in 
particular, that the quantities r, represent the total transition rates for the blue and  
the red transitions. In the following we shall see that we do  not need to solve these 
equations for studying the characteristics of bright and dark periods. 

Finally, let us stress that it is also possible to treat the lasers in a quantum way by 
using the same Bose fields that describe the emission process. One has simply to take 
a suitable coherent state as initial state for the fields [34]. However, this procedure 
does not imply any difference for the dynamics of the atom ((2.6), (3.4) and (3.5) are 
not changed). The true approximation is not in the use of a classical description for 
the lasers, but in replacing the true electromagnetic field with the Bose fields u j ( t ) .  
However, this approximation is the usual one (it gives the standard Markovian master 
equation for the density matrix of the atom) and it is justified as long as ‘memory’ 
contributions d o  not play any important role. 

4. The detection process 

We now have to treat the counting process of blue and  red photons. We assume there 
are two detectors at the same distance D from the atom, one counting the blue photons 
that reach it and the other the red photons. For the moment we d o  not consider the 
interaction between atom and field. 

First we have to describe the propagation of the electromagnetic field from the 
atom position to the position of the counters. We can choose the modal expansion 
(3.2) in such a way that the index j also contains the direction of propagation. Only 
the photons with the right direction of propagation will reach the counter. Therefore, 
the set I ,  of field modes for the blue photons can be split into two disjoint sets If and 
IQ. If j E I : ,  the field a,( t )  represents a field (carrying blue photons) that has the right 
direction of propagation for reaching the counter for blue photons; if j E I!, then uj( t )  
does not reach any counter. The same applies for the ‘red’ fields u,(t),  j E  Zr, with Ir 
being split into If and 1;. 

In our approximations, the propagation of the electromagnetic field is very simple. 
The field a, ( [ )  is at the atom position at the time t. The corresponding field at a 
distance D along the direction specified by j will, at time t ,  be ii](D; t )  = a,( t - D / c ) ;  
we have only to take into account the retardation due to the time of flight of the 
photons. Indeed, a justification of this statement can be found in [35] where a different 
propagation problem is studied, but the approximations are similar to ours (note the 
Dirac delta S ( f  - t ’ )  in the commutation rules (2.16) in [35]). The final result is that 
propagation involves pure translation in time (see [35] p 660). 

From the above considerations, the operator that gives the number of photons 
arriving at the detector for blue photons in the time interval ( t , ,  t r ]  is 

where the operators .\{ are given by (2.2). Analogously, one defines the number 
operator N z ( t l ,  t z )  for red photons. Note that, by the commutation rules (2.1), we 
have [.I:, .\:I = 0 and, therefore, all the operators N y (  t , ,  f 2 )  commute, also for different 
times. 
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Consider now an ideal photoemissive counter. This detector performs essentially 
a measurement of the number operator, so that we can assume the probabilities of 
counts to be given by the quantum expectation values of the projection-valued measure 
associated with the commuting self-adjoint operators (4.1). Because infinitely many 
self-adjoint operators are involved, it is easier to work with the Fourier transform of 
this projection-valued measure, which is given (cf [7] equations (4.1), (4.3) and (4.6)) 
by the unitary operator 

V,[k]=exp i k,(s)dNY ( "r, lor ) 
where k (  t )  = ( k , (  t ) ,  k,( t ) )  is a two-component, real-valued test function and we have 
set 

The operator V,[k] is the analogue of the characteristic function of a probability 
measure and can be called a characteristic operator. It satisfies the QSDE (see [7] 0 IV) 

dV,[k]=(  " = I  ( e ' k ~ " ' - l ) d ~ ) V , [ k ]  V,[k] =U. (4.3) 

If the three-level system is also considered, the operators A{ and N,", that give the 
number of photons before the interaction, have to be substituted by the analogous 
operators in the Heisenberg picture 

:= U:A{ U, N , " O U t : =  U:N,"U,  

which give the number of photons after the interaction between fields and atom. 
Correspondingly, the operator V , [ k ]  has to be replaced by [7]: 

V:"'[k] := U :  V,[k] U,. 

@ , [ k 1 : = T r ~ , ~ , - [ ~ " " ' ~ k 1 ~ ~ O / + ~ ~ ~ r L o ~ ~ 1  (4.4) 

Now consider the quantity 

where p is the initial state of the atom and +o (Fock vacuum) is the initial state of the 
fields. The quantity @.,[&I is the quantum expectation value of the characteristic 
operator V:"'[k] and, by definition of this operator, it represents the Fourier transform 
of the probabilities of the counts. More technically, (4.4) gives the characteristic 
functional of a counting process. This process fully describes the statistics of the 
photon counts. This point is discussed in [7] (cf also [5]); for the notion of a 
characteristic functional see, for instance, [36]. 

By using (2.40) and (4.31, it is possible to eliminate the fields from the description. 
The procedure is similar to that giving the master equation (2.6). One obtains (cf [7] 
equations (3.20), (3.22), (3.28) and (4.8)) 

@,[kI = Tr,,(G,[klp) (4.5) 

where G,[k] is a linear map on the space spanned by the statistical operators on h o ,  
satisfying the equation 

d 
-GG,[kl d t  = ( L +  K ( k ( t ) ) ) G , [ k ]  Go[ k]  = I. (4.6) 
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The quantities L and K ( k )  are linear maps on the same space as G , [ k ] ;  L is defined 
by (3.4) and K ( k )  turns out to be given by 

2 

K ( k ) p  := (elk" - 1 ) d , / O ) ( v l p / v ) ( O /  
v = l  

where 

C hj12 1 
&, := - r" ,tIY, 

From definition (3.6) of r,, we have Os E , ,  s 1. As will be apparent from the following 
developments, is the 
efficiency of the counter for red photons. In particular, = 0 represents the case of 
no counter for red photons. 

It is possible to prove [ 5 ]  that, once the fields are eliminated, a counting process 
in the sense of [23-251 is obtained. 

From now on we shall forget the retardation D / c  (see (4.1) and (4.2)) that simply 
gives a constant time shift in all the detection times. 

is the efficiency of the counter for the blue photons and 

5. The statistics of the photon counting process 

As stated in the previous section, the characteristic functional (4.4) or (4.5) contains 
the whole statistics of the counting process and any statistical information on the 
emitted light can be extracted from it. This functional can be rewritten in such a way 
that the structure of a counting process is apparent. By setting 

' 
J ( r ) p  := leik"")&,r, lO)(vipIv)(O1 

" = I  

one has 

L + K ( k ( t ) ) =  i + J ( t ) .  

The solution of (4.6) can now be written as an expansion in J ( t )  (Dyson series): 

xY(rm - t m - l ) J ( t , , - l ) .  . . Y(t2-  t , ) J ( r , ) Y ( t , )  
where 

Y ( t )  := exp( i t ) .  

Now the characteristic functional (4.5) becomes 

T r , , , ( G , [ k l p ) = P , ( O l p ) +  f i . . .  i [ 'c l t , , ,  [ r J"drm-  , . . .  [:ldi, 
m = I u , = I  c , , , , = I  0 0 
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where 

Pt (0  1 p )  := T r , ( Y (  t ) P  

x . .  . x WJf2- ~ 1 ~ ~ ” , ~ ” 1 ~ ~ 1 1 ~ ~ ~ ~ 1 ~ ~ ~ 1 ~ 1 ~  

w m  := E , r , ( v l ( Y ( t ) ~ o ) l v ) .  (5.7) 

(5.4) 

p , (  v,, t,;  . * . ; V I ,  111 p )  := P,-t,,, (01 90) W”,,, ( t ,  - ? ? ? - I )  w”,,,-I( f,-l - t,-d 
( 5 . 5 )  

00 := /O)(OI (5.6) 

The structure (5.3) is typical for the characteristic functional of a regular point 
process (roughly speaking, a point process for which the probability density of two 
or more counts at the same time vanishes). The quantity (5.4) is the probability of 
having no count in the interval (0 ,  t ]  when the initial state of the atom is p. The 
quantities ( 5 . 5 )  are the probability densities of counting a photon of type v l  at time 
t , ,  a photon of type v 2  at time t 2 , .  . . , ( 0  < t ,  < t2 < . . . < t ,  < t )  and no other count in 
the interval (0 ,  t ] ;  these quantities are usually called elementary (or exclusive) probabil- 
ity densities (EPD) [ 2 5 , 2 6 ] .  The factorised structure of the EPD is a characteristic of 
the model we are considering and it renders the study of the counting process very 
simp 1 e. 

From the quantities (5.4) and (5.5) the full statistics of the counting process can 
be obtained. For instance, the probability of detecting n blue photons and no red 
ones in the interval (0 ,  t ]  is given by 

P l ( n , l l p ) = [ ‘ d r n  0 [ “ d t  0 n - l . . . [ o f *  dt,p,(L,rn; . . . ;  1 , r ~ l p ) .  

It is interesting to consider the EPD in an interval ( t o ,  t ] ,  conditioned by having 
counted a photor, of type vo at time to.  From the structure ( 5 . 5 )  we obtain for these 
conditional EPD 

P r ( V , ,  t,;. . . .; V I ,  t,Ivo, f O ) = P I - - l o ( ~ , ,  4 n - t o ; .  . . . ; V l r  t 1 - - 0 l Q o ) .  (5.8) 

In other words, after a count (of a blue or red photon) the atom is in the ground state. 
This result is due to the structure of the interaction atom-field. Moreover, from 
(5.5)-(5.7) we have 

W J t ) = P t ( %  t l 9 o )  

and, therefore, by taking into account (5.8), we see that W,( t )  is the probability density 
of detecting a photon of type v at time to+ t and no other photon between to and to+ t, 
given a count at time to.  

By defining 

~ ( t ) p  := exp(-it j t)p exp(iH t )  

Sp:= c (1 - E ” ) ~ ” 1 0 ) ( ~ l P I ~ ) ( 0 1  
7 

v = l  

we have from (5.1) and (5 .2)  that Y ( t )  satisfies the integral equation 

k’( t 1 = O( t 1 + lo‘ d t ’  Y( t - t ‘ )  SO( t ‘ ) .  
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By putting this expression into (5.7) we obtain 
7 

W , ( t ) = E Y W Y ( t ) +  C ( I -&, , )  d t ’  W,, ( t ’ )W, ( t - t ’ )  (5.9) 
I ) = I  I, 

where 

W,( t )  := r , (  vi(@( t ) Q o ) l v )  = r,l( vIexp(-iGt)/O)l’. (5.10) 

= E~ = l ) ,  the quantities 
W,(t)  and W , ( t )  coincide. Therefore, from the meaning of W,( t ) ,  it follows that 
W,( t )  is the probability density of the emission of a photon of type Y at time t + t o ,  

given that the previous emission was at time to .  The quantities W,( t )  and qV( t )  satisfy 
the equations 

Note that, when all the emitted photons are detected 

f X  2 

d t C  W , , ( t ) = I  I,, u = l  

( 5 . 1 1 ~ )  

+= 2 lo d t  W,( t )= 1. (5.1 1 b )  

Indeed, the first quantity above is the probability that at least a photon is emitted in 
the interval (0, +a) and the second one is the probability that at least a photon is 
detected in (0, +a); on physical grounds, these probabilities must be one. The formal 
proof runs as follows. We have 

v = l  

d 
W, , ( t )= i  T rh [ ( f i - f i7 ) (@( t )Qo) ]=  --Tr,%(@(t)Qo) 

” = I  dr 

2 I,’ dr W v ( t )  = 1 - lim Trh[O(t)Qo]. 
1 - + 2 -  ” = I  

(5.12) 

In  the next section we shall show that the limit on the RHS of (5.12) vanishes and this 
proves (5.11a). Then (5.11b) is a consequence of (5.9). 

Consider now the probability of no counts up to time r. From (3.5), (5.11, (5.2) 
and (5.41, we obtain 

PO(0lP) = 1 

By taking p = Qo and recalling (5.7) and (5.11b), these equations give 

Analogously, the probability E‘(t)  of no emission up to time I ,  given an emission at  
time zero, is 

Finally, by exploiting (5.9), we obtain 

(5.13) 

(5.14) 
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This equation has a simple physical meaning. The quantity W,( t ' )  d t '  is the probability 
of the emission of a photon of type v between t '  and t '+d t ' ,  1 - e, is the probability 
of failing to detect this photon, and P,-,,(OIQo) is the probability of no detection 
between t' and t. Therefore, (5.14) states that the probability of no detection up  to 
time t is equal to the probability of no emission up to time t plus the probability that 
some photons be emitted before t but not detected. Equations (5.9) and (5.14) connect 
the emission process to the detection process by taking into account the efficiency of 
the detectors. Although in our approach they are naturally derived from an  operator 
equation for Y( t ) ,  they d o  not have a quantum origin and could also be derived from 
purely classical arguments. Moreover, we have considered detectors that count all the 
photons reaching them; but an  intrinsic efficiency of the detectors can be easily taken 
into acount by a smaller value of the parameter e,. 

6. Dark and bright periods 

In [12] it is shown that the characteristics of bright and dark periods are controlled 
by the probability Pt(OI Qo)  of no count. However, we expect that the main properties 
of bright and  dark periods d o  not depend on the efficiency of the counters, at least if 
the efficiency of the detector for blue photons is not too bad (see equation (1 1) of [ 121 
and the related comments). Indeed, going back to the intuitive explanation given in 
the introduction, to detect o r  not to detect the rare red photons cannot change the 
length of bright and dark periods and to miss a part of the blue photons merely has 
the effect of lowering the intensity of the signal during the bright periods. In principle, 
a rigorous proof of this statement would be based on (5.14); however, computations 
are not quite so simple. In any case, from now on we shall consider only the emission 
process, as in [12]. 

Let us start by computing the functions W , ( t ) .  If we set 

exp(-itjt)lO)= 2 a , , ( t ) l v )  
v = o  

then (5.10) gives 

% ( t )  =rvIa&)l2 v = 1,2 .  (6.1) 

By definition (3.5) of 6, we have that coefficients a,(?) satisfy the equations (cf [12] 
equations (14)) 

U,( t )  = - ; i n ,  a, (  t ) - $in,a,( t )  

U , (  I )  = - $a, a(,( t 1 + ( i  A ,  - $ , ) a , (  t )  (6.2) 

U 2 ( t )  = - ~ i R , a , , ( t ) + ( i A , - ~ T , ) u , ( t )  

with the initial condition a,(O) = 6,,,. The solution of these equations can be obtained 
by the Laplace transform technique and can be written as 
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with an analogous expression for ao( t) .  The z, are the three roots of the characteristic 
equation of system (6.2). It can be shown that Re(z,) < 0; this implies that the limit 
in the R H S  of (5.12) vanishes and (5.11a) is proved. 

We are interested in the case in which very different characteristic times appear. 
Indeed, when 

r l  >> r2 rl >> n2 n, >> n2 n: >> rlr2 A I  = O  (6.3) 

the three roots z,, are approximately given by 

z l  -Lr 4 1  +l(lr2-fi:)l/2 2 4 1  (6.4a) 

z 2 z  -Lr 4 1  -L(ir2-n;)1/2 2 4 1  (6.46) 

zo=  - $ z + i A 2 - i  (6.5a) 

(6.56) 

where z1 and z2 are real or complex numbers according to the sign of r: - 4n:. From 
(6.3) we have that IRe(zo)l<< (Re(zl,z)l. 

Now, following [12], we write (see (5.13) and (6.1)) 

where 

and in F s h o f l ( f )  we have grouped all the other terms, which have a much shorter 
decaying time. Let us set now 

n:= [o+a,dtF,ong.t) 
then (6.6) and (5.13) imply 

d t  Fshofi(  f )  = 1 - n. I‘ 
By using the results (6.4) and (6.5) we obtain the approximate expressions: 

n: 1 n -  (R; - 4A:)2 + 4A:r: 12 Re( zo) I 

Moreover, (6.3) and (6.7) give n<< 1. 



6354 A Barchielli 

In [ 121 it is shown that the structure (6.6) for I'( t )  implies the existence of bright 
and dark periods. The argument is as follows. The quantity 1 - p (  t )  is the probability 
of at least an  emission in (0, t ] .  Then the quantity 

is the probability density for the waiting time A t  between two emissions. 
We introduce now a time delay 0 such as 

12 Re(z,)I-'<< e<< ( 2  Re(zo)/- '  (6.8) 

and consider the time interval A t  between successive emissions as 'short' if A t  < 8 and 
as 'long' if A t  > 8. The probability of having a short waiting time between two emissions 
is 

P ( A t  < e)  = Joe d t p ( r )  = lo' dr  Fshort(t) = d t  Fshort(t) = 1 -n 

and, similarly, the probability of a long waiting time is 

P ( A t  > e)  = lo+= d t  Flong(r) = ll. 

Note that these probabilities are independent from 6 as far as (6.8) holds. We 
can say that the 'short' waiting times are distributed with a probability density 
(1  -n)- 'Fsh, ,n(  t )  and the 'long' ones with a probability density II-'FIong( t ) .  Therefore, 
the mean duration of the short intervals is given by 

and the mean duration of the long intervals is 
. r t ~  

Tlong = J dr  tF,,,,( t )  = 12 Re( zo)/- '  n o  

(6.9) 

(6.10) 

When many photons are emitted, separated by short time intervals, the intensity 
of the signal registered by the detector is approximately constant, with small fluctuations 
due to shot noise, and we have a bright period. When two photons are emitted instead, 
separated by a long time interval, a dark period is registered. The mean duration T~ 
of a bright period is given by T,,,,,fi, where fi is the average number of consecutive 
short intervals. The durations of the intervals between two emissions are uncorrelated 
variables, because after any emission the electron goes into the ground state (cf (5.8) 
and the following comments). Therefore, the probability of having N short intervals 
followed by a long one is (1 -ll)"n. If we want at least one short interval in the 
sequence, we have to divide this probability by 1 -n. Finally, we have 

X 

fi= N(l-n)"- 'n=l /n  
N = 1 

and the mean duration T~ of bright periods is 

T B  = T s h o r t / n .  

Analogously, the mean duration T], of dark periods is 

T D =  Tlong / ( l  -n) T o n g  

(6.11) 

(6.12) 
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When (6.4), ( 6 . 5 ) ,  (6.7), (6.9)-(6.12) are particularised to the cases considered in 
[12] (RI<<  rl or SZ, >>r,), exactly the same results are obtained. In [12] it is also shown 
that it is possible to obtain spectroscopic information on the weak transition by plotting 
the ratio rD/ rB against the detuning h2.  Our presentation of the shelving effect shows 
that the explanation given by Cohen-Tannoudji and Dalibard can be founded in a 
well developed theory of counting processes and that, in principle, any other statistical 
property of the emitted light could be computed. Moreover, our procedure can be 
easily applied also to the case of incoherent excitation. 
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